Auxiliary problem and algorithm for a generalized mixed equilibrium problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Generalized Equilibrium Problem with Mixed Relaxed Monotonicity

We extend the concept of relaxed α-monotonicity to mixed relaxed α-β-monotonicity. The concept of mixed relaxed α-β-monotonicity is more general than many existing concepts of monotonicities. Finally, we apply this concept and well known KKM-theory to obtain the solution of generalized equilibrium problem.

متن کامل

On Vector Equilibrium Problem with Generalized Pseudomonotonicity

In this paper, first a short history of the notion of equilibrium problem in Economics and Nash$acute{'}$ game theory is stated. Also the relationship between equilibrium problem among important mathematical problems like optimization problem, nonlinear programming, variational inequality problem, fixed point problem and complementarity problem is given. The concept of generalized pseudomonoton...

متن کامل

Algorithm for Solving a Generalized Mixed Equilibrium Problem with Perturbation in a Banach Space

Let B be a real Banach space with the dual space B∗. Let φ : B → R ∪ { ∞} be a proper functional and let Θ : B × B → R be a bifunction. In this paper, a new concept of η-proximal mapping of φ with respect to Θ is introduced. The existence and Lipschitz continuity of the η-proximal mapping of φ with respect to Θ are proved. By using properties of the η-proximal mapping of φ with respect to Θ, a ...

متن کامل

The Auxiliary Problem Algorithm for Generalized Linear Complementarity Problem Over a Polyhedral Cone∗

In this paper, we consider an auxiliary problem algorithm for solving the generalized linear complementarity problem over a polyhedral cone (GLCP). First, we equivalently reformulate the GLCP as an affine variational inequalities problem over a polyhedral cone via a linearly constrained quadratic programming under suitable assumptions, based on which we propose an auxiliary problem method to so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Egyptian Mathematical Society

سال: 2015

ISSN: 1110-256X

DOI: 10.1016/j.joems.2014.03.003